
Single-Sign-On with DIKSHA
Trusted, Passwordless authentication with DIKSHA

Overview

DIKSHA allows signed on users on integrated systems to seamlessly navigate to DIKSHA. By

design, we keep the systems loosely-coupled, and achieve the seamless navigation by sharing

trusted login status. This keeps the technical complexity for integrating systems simple and

the systems do not need to change their own sign-on protocols.

The philosophy is built around a premise of trust between DIKSHA and the integrated systems.

When an authenticated user on integrated system navigates to DIKSHA, the integrated system

redirects the browser and sends the details of the user to DIKSHA. This data is signed using a

private key of the sender, to allow DIKSHA to trust the incoming data and allow the user to sign

in. This ensures that for integrating systems, the change is only how they redirect users to

DIKSHA, and not on their internal authentication implementation.

This document describes a protocol to create new users in the DIKSHA and to log them in via

the signed token.

Protocol

The authentication protocol provides:

1. Registration of trusted state systems

2. A secure API endpoint to auto-login a user into DIKSHA

The Integrating State System (IS) can register itself as a trusted partner with DIKSHA system

using the Registration process. Later the IS can direct a User to login to DIKSHA and create a

new session. To authenticate the User, the IS must send a signed token which contains the user

identity and profile information.

Registration

Single sign-on will only be available to registered DIKSHA clients -- a new client will need to

register before being able to access this endpoint. In order to register a new client which will

authenticate users through a link, the client will need to provide the following information:

● Identifier for partner system (iss), example: apekx

● RSA public key

To create a pair of public/private keys, the following command can be used:

openssl genrsa -out private.pem 2048

This private key must be kept secret. To generate a public key corresponding to the private key,

execute:

openssl rsa -in private.pem -outform PEM -pubout -out public.pem

When the above commands are run, the public key will be written in public.pem, while the

private key will be written in private.pem. The private key should be kept with the client and

never shared. The public key should be given to DIKSHA integration team to verify the client’s

signature.

Auto-login

The Integrating State System (IS) must redirect users to DIKSHA system by sending a signed

JWT token which will be verified by DIKSHA system against the registered public key and allows

users into the system.

JWT Tokens

We use JWT (pronounced “jot”) in our protocol to generate signed tokens which can be verified

by the Receiving Party (RP). A JWT is a signed token containing claims from the sender to the

recipient. Because the token is signed by the sender, the recipient can be sure that the token

has not been tampered. For a more detailed overview of JWTs see: https://jwt.io/introduction/

JWTs are represented in JSON. To authenticate with DIKSHA, a JWT provided to the auto-login

endpoint must contain the following fields (also known as claims) in its payload. Unless noted,

the fields are

● jti: a unique id of the token, can be any string generated by the sender which is

unique

● iss: the issuer of the JWT, this must be the id of the registered client (see Registration

below)

● sub: the subject of the token, this must be the userid of the person in the state system

who will be logged in to DIKSHA

● aud: the consumer of the token, for now this must be <base_url>

● nbf: not before, the earliest time when the token can be used (expressed as the

number of seconds since epoch in GMT). The nbf time cannot be in the future

https://jwt.io/introduction/

● exp: expires, the timestamp at which the token expires (expressed as the number of

seconds since epoch in GMT). The exp time cannot be more than 600 seconds after the

nbf time

● name: the name of the person whose userid is in sub

● state_id: channel value of this state’s rootOrg in DIKSHA system

● school_id: the id of the school to which the user belongs to, this must be the id of

the school in the state system and the school should be pre-created in DIKSHA system

with this id as the external id: optional

● redirect_uri: the url of the page where the user should be directed after login

Example Payload
{

 "jti": "261263cd-3a0e-4aee-8faf-6d9d9eb14bb1",

 "iss": "<replace with id provided by at registration time>",

 "sub": "user_external_id",

 "aud": "<base_url>",

 "iat": 1498556656,

 "exp": 1498560256,

 "name": "Some User",

 "state_id": "state",

 "school_id": "pre_created_school_external_id",

 "redirect_uri": "<base_url>/resources"

}

Base Url

The base url for DIKSHA staging will be https://staging.ntp.net.in

The base url for DIKSHA production will be https://diksha.gov.in

Signature

The payload described above must be signed before sending it the the authentication endpoint.

The JWT specification permits signing via HMAC, RSA or ECDSA algorithms. For the purpose of

this authentication end-point, the only permitted algorithm will be RSA signing via a private

key. The corresponding public key will need to be provided during registration of the client. (for

an example of creating a RSA-signed JWT in Java see:

https://connect2id.com/products/nimbus-jose-jwt/examples/jwt-with-rsa-signature)

https://connect2id.com/products/nimbus-jose-jwt/examples/jwt-with-rsa-signature

Auto-Login Users

To login a user, the client must provide a link (which makes a GET request) to the auto-login

endpoint /v2/user/session/create?token=<jwt_token> with the JWT token in the

query parameter of the request. Here’s an example:

<base_url>/v2/user/session/create?token=eyJhbGciOiJIUzI1NiIsInR5cCI6I

kpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4gRG9lIiwiYWRtaW4iO

nRydWV9.TJVA95OrM7E2cBab30RMHrHDcEfxjoYZgeFONFh7HgQ

If a user already exists in DIKSHA system with the given external id and within the specified

state, the user will be automatically logged in. If the user is not found, user will be prompted to

provide their phone number, which will be used to create the user account in DIKSHA system

and then will be logged in.

